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Abstract:    The solution of a slope stability problem can be approached by its least upper-bound and maximum lower-bound with 
high accuracy. The limit equilibrium methods that employ vertical slices imply a lower bound of the factor of safety. It has been 
successfully extended to the area of active earth pressure analysis that accounts for different input of locations of earth pressure 
applications. Those methods that employ slices with inclined interfaces give an upper-bound approach to the stability analysis. It 
enjoys a sound mechanical background and is able to provide accurate solutions of soil plasticity. It has been successfully extended to 
the area of bearing capacity analysis in which various empirical coefficients are no longer necessary. The 3D upper- and lower-bound 
methods under this framework have been made possible and show great potential for solving various engineering problems. 
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INTRODUCTION 
 

The limit equilibrium method was developed 
almost simultaneously with the advent of the disci-
pline of Soil Mechanics. By now it is still the major 
approach for geotechnical engineers to tangle with 
various practical problems. However, this method is 
more or less regarded as an empirical approach since 
some assumptions are to be introduced when the 
governing equations are set. Besides, it is considered 
as a well developed and understood method with no 
many demands for further updating. 

As a branch of applied science, Soil Mechanics 
and Rock Mechanics benefit from the recent devel-
opments in the classic mechanics and computer sci-
ence. The former provides a theoretical background, 
such as the upper-bound and lower-bound theorems 
of Plasticity, which enables us to establish a modern 

system of limit analysis based on the traditional 
method of slices. The latter makes it possible to apply 
the theory to practical geotechnical problems. 

In this paper, we will show that the limit equi-
librium method is not as empirical as someone be-
lieves. New developments and findings also convince 
us that this is an area in which more research works 
will be needed. 

 
 

THEORETICAL FRAMEWORK 
 
General  

The framework of limit analysis using the up-
per-bound and lower-bound theorems, as applied for 
Soil Mechanics, was established by Chen (1975). 
However, his work is limited to analytical approaches 
that can hardly be extended to practical problems in 
which the complicated geometry of slope profiles 
always exclude any possibilities for analytical solu-
tions. The statements described in this Section try to 
formulate the basic principles of Plasticity by an ap-
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proximation that discretizes the failure mass by slices 
in 2D areas, or columns in 3D areas. This is an ap-
proach that has been successfully applied to geo-
technical engineering to deal with practical problems 
during the past half century. 

Another approach commonly adopted in geo-
technical engineering is factor of safety F, which 
reduces the available shear strength criteria to bring 
the structure to a state of limiting equilibrium by the 
following equations: 

 
ce=c/F,                                          (1) 

 tanφe=tanφ/F,                                 (2) 
 

where c and φ are cohesion and friction angle re-
spectively. In the following presentations, the sub-
script ‘e’ appeared for all variables invariably means 
that the related c and φ values are reduced by Eqs.(1) 
and (2). The factor of safety F always keeps a 
monotonic relationship with the loading factor η used 
in Plasticity, although a formal demonstration is not 
available. Therefore the theoretical statements re-
garding the upper- and lower-bounds in this paper 
based on the ultimate load can be extended to the 
factor of safety approach.  

In the establishment of the limit analysis 
framework, a ‘true failure mechanism’ is assumed. It 
is symbolized by a slip surface Γ that separates the 
soil body into two domains: the plastic sliding mass Ω 
and the elastic zone Ε, which overlay and underlay the 
slip surface respectively under the application of an 
ultimate load T (Figs.1 and 3). Detailed description 
will be given as follows.  
  
Statements for the lower-bound approaches 

1. Theoretical statements 
The lower-bound method as applied in slope 

stability analysis can be stated as follows. 
Assume that a true failure mechanism as shown 

in Fig.1 exists with an associated ultimate load T, then, 
any external load T0 that balances a statically admis- 
 

 
 
 
 
 
 
 

sible stress field 0
,i jσ  on Ω and Γ will be smaller than 

or equal to T. 
By ‘statically admissible stress field’, we mean 

that o
,i jσ  follows the equilibrium condition  

 
0
, ,i j iWσ =                                       (3) 

 
under the restrictions for physical admissibility that 
require: 

(1) No shear failure develops, i.e., 
 
      n tan 0;cτ σ φ− − ≤                                    (4) 
 
(2) No tension develops, i.e., 

 
0
3 0,σ ≤                                         (5) 

 

where Wi is the external load, σn and τ are normal and 
shear strength on the failure surface, and 0

3σ  is the 
minor principal stress. 

2. The generalized method of vertical slices 
As a simplified approach, our profession has a 

long history of employing the method of vertical 
slices to solve various practical problems of geo-
technical engineering based on the lower-bound 
theoretical background. The method proposed by 
Morgenstern and Price (1965), as well as by others 
(Bishop, 1955; Janbu, 1973), implies a lower-bound 
approach with the following formulations.  

(1) To allow the satisfaction of Eq.(3) for each 
slice, the force and moment equilibrium equations are 
established as (Chen and Morgenstern, 1983): 

 
d dtan ( )sec ,
d d
G G p x
x x

βψ ψ− = −                      (6) 

d d dsin ( cos ) ( cos ) ,
d d dt t

WG y G y G h
x x x

β β β η= − + +

                (7) 
 

where 
d( ) sin( ) sin( ) sec cos
d

d d         sec sin cos( ),       (8)
d d

e e e e

u e e

Wp x q c
x

W Wr
x x

φ α φ α α φ

α φ η φ α

= − + − +

− + −

,eψ φ α β= − +                                    (9) 
 

G=the total interslice force; yt=y value of the point of 
Fig.1  The lower-bound method as applied for slope
stability analyses 
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application of the interslice force; α=inclination of 
the slice base; β=inclination of the interslice force; 
dW/dx=weight of the slice per unit width; q=vertical 
surface load; η=the coefficient of horizontal seismic 
force; ht=distance between base and the horizontal 
seismic force; ru=pore pressure coefficient (Fig.2d). 

(2) To satisfy Eqs.(4) and (5), it is required that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

on the interfaces no shear and tensile failures occur, 
i.e., 
 

av av[ cos tan ]/( sin ) ,G c h G Fβ φ β+ >              (10) 
 G>0,                                              (11) 
 

where cav and φav are average strength parameters on 
an inter-slice face. 

Among a variety of assumptions for β(x), we 
neglect those that produce results violating Eqs.(10) 
or (11), and find one that gives the maximum factor of 
safety, according to the lower-bound theorem.  
 
Statements for the upper-bound approaches 

1. Theoretical statements 
The upper-bound method as applied in slope 

stability analysis can be stated as follows (Fig.3). 
Assume that a true failure mechanism as shown 

in Fig.3 exists with an associated ultimate load T, 
applied on L. Now, suppose another postulated failure 
mechanism consisting of Ω* and Γ*, associated with 
an increment of strain *

ijε  and *u , then, T* determined 

by the following work-energy balance equation must 
be either larger than or equal to T: 
 

* * *

* * * *d d d d .ij ij ij ijΩ Γ L Ω
v s T u s Wu vσ ε σ ε∗ ∗ ∗+ = +∫ ∫ ∫ ∫     (12) 

  
The two terms in the left-hand side of Eq.(12) are the 
internal energy dissipations in the failure mass and on 
the slip surface respectively. *

ijε  and *u  are deter-

mined based on certain flow law. For example, the 
normality law requires that *

ijε  and *u are perpen-

dicular to the yield surface, as shown in Fig.4. *
ijσ  is 

also determined once *
ijε   and *u  are identified.  

For the applications of the upper-bound theorem 
to slope stability analysis, Chen et al.(2005) gave a 
formal demonstration considering the following 4 
conditions as shown in Figs.3a~3d respectively: (1) 
The true failure mechanism Ω and Γ completely 
overlaps the postulated Ω* and Γ*; (2) Ω and Γ are 
completely inside Ω* and Γ*; (3) Ω and Γ are com-
pletely outside Ω* and Γ*, and (4) Γ intersects Γ*. 

2. The upper-bound method of inclined slices 
As a simplified approach, the upper-bound 

theorem can be formulated based on the method of  

Fig.2  The factor of safety will be obtained by solving the
relevant boundary conditions based on the assumptions
made for the distribution of β(x) 
(a) The failure mass; (b) Assumption 1; (c) Assumption 2; (d)
Forces applied on a slice 

0
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inclined slices to solve various practical problems of 
geotechnical engineering. This method is based on the 
Mohr-Coulomb associated flow law that makes the 
procedures of solving equation much easy as follows.   

(1) As an approximation to Ω*, divide the failure 
mass into a number of inclined slices, as shown in Fig.5. 
Here, the inclined interfaces are regarded as a part of 
slip surface Γ* and the slice itself is assumed to be rigid 
block in which no energy dissipation develops.  

(2) The Mohr-Coulomb associated flow law 
based on the equality part of Eq.(4) requires (Fig.6a): 

 
 
 
 
 
 
 
 
 
 
 

n

s

/ tan ,
/ e

V f
V f

σ φ
τ

∂ ∂
= = −
∂ ∂

               (13) 

 
where Vn and Vs are normal and tangential velocities 
respectively. τ and σ are shear and normal stresses 
respectively. φe is the reduced friction angle as de-
fined by Eqs.(1) and (2). This means that the plastic 
velocity developed by an increment of external load 
should incline at a friction angle to the failure surface. 

(3) The internal energy dissipation by the total 
stresses of the failure surface can be expressed as  

 
s n( ) ( cos sin  )

   ( cos sin ) ,
e e

e e

D V V A VA
c u VA
τ σ τ φ σ φ

φ φ
= + = +

= −
  (14) 

 
where A is the area of the failure surface and V is the 
magnitude of the velocity. 

As shown in Eq.(14), the advantage of adopting 
Mohr-Coulomb associated flow rule is that the energy 
dissipation can be determined without the knowledge 
of the internal stresses, which are generally unknown. 
This can be illustrated by Fig.6b in which the resultant 
of the normal effective force N and the shear resis-
tance contributed by friction, designated P, inclines at 
an angle of φe. Therefore P is perpendicular to V and 
does not work when Eq.(14) is established. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5  The upper-bound method as applied for slope sta-
bility analysis 

Fig.3  The upper-bound method as applied for slope sta-
bility analyses. (a) The true failure mechanism Ω and Γ
completely overlaps the postulated one Ω* and Γ*; (b) Ω
and Γ are completely inside Ω* and Γ*; (c) Ω and Γ are 
completely outside Ω* and Γ*; (d) Γ intersects Γ* 

(a) (b) 
 
 
 
 
 
(c)                                        (d) 

Fig.4  Determining ijε * , u* and ij
*σ  based on the nor-

mality flow law 
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Fig.6  The plastic velocity that inclines at an angle of φe to
the failure surface 
(a) The plastic velocities; (b) The ‘combined frictional force’

e 

e 



Chen / J Zhejiang Univ Sci A   2007 8(11):1712-1724 1716

While Fig.3 is simplified to Fig.5, Eq.(12) in the 
upper-bound approach is approximated as 

 

 
1

*

1 1

,
n n

j s
ek ei

k i

D D
−

= =

+ ∆ =∑ ∑ WV                    (15) 

 
where the two terms in the left-hand side of Eq.(15) 
represent the internal energy dissipations developed 
on the interfaces and slip surface respectively, and 
determined by Eq.(14). Eq.(15) adopts the factor of 
safety that involved in the subscript ‘e’. The external 
load T in Eq.(15) no longer exists. 

(4) The true failure mechanism is determined by 
searching the minimum value of F associated with a 
critical discretization pattern.  

The slip surface is discretized into a number of 
nodal points that are connected by either smooth 
curves or straight lines designated A1, A2, …, A6 
(Fig.7). The inclinations of the interfaces are desig-
nated as δ1, δ2, …, δ6, associated with B1, B2, …, B6. 
The optimization method will find theses variables 
that give the minimum factor of safety. A great number 
of literatures (Chen and Shao, 1988; Chen, 1992; Chen 
et al., 2001b) have dealt with this subject. Although 
most of them are concerned with the method of ver-
tical slices, the algorithms equally apply to the method 
of inclined slices. 

 
 
 
 
 
 
 
 
 
 

 

Donald and Chen (1997) demonstrated that the 
upper-bound method is identical with the Sarma 
(1979)’s method that employs force equilibrium ap-
proaches with rather complicated mathematical for-
mulations. Also, the optimization process was not 
included in this method. 
 
 
SLOPE STABILITY ANALYSES BASED ON THE 
METHOD OF SLICES 
 
Formulations for the generalized methods of slices 

1. Solutions to the governing equations 
Chen and Morgenstern (1983) gave the solutions 

to Eqs.(6) and (7), which are subsequently extended 
by Chen and Li (1998) to incorporate active earth 
pressure problems. The solutions to the force and 
moment requirements of Eqs.(6) and (7) are: 

 

( ) ( )d ,
b

ma
p x s x x G=∫                                       (16) 

( ) ( ) ( )d ,
b

ma
p x s x t x x M=∫                                (17) 

where 
( ) sec ( ),s x E xψ=                                           (18) 

d( ) exp tan d ,
d

x

a
E x βψ ξ

ξ
 

= − 
 
∫                         (19) 

1( ) (sin cos tan ) ( )d ,
x

a
t x Eβ β α ξ ξ−= −∫        (20) 

w ( ),mG P PE b= −                                           (21) 

w w
d= [ cos + ( ) ( )] + d ,
d

b

m t ta

WM P h P h t b E b h x
x

δ η− ∫ (22) 

 
where P is the value of G(x) at x=b, or active earth 
pressure at the vertical wall; Pw is the water pressure 
at x=a, i.e. Pw=G(a); h is the distance between the 
point of application of the active earth pressure and 
the bottom of the wall, i.e., the value of (y−yt) at x=b; 
hw is the distance between the point of application of 
the water pressure and the bottom of the tension crack, 
i.e., the value of (y−yt) at x=a; δ is the value of β at 
x=b, i.e., the friction angle at the wall in case of earth 
pressure problems. 

2. Solving for F and λ 
Eqs.(16) and (17) involve an unknown F (or P) 

and an unknown variable β(x). Chen and Morgenstern 
(1983) suggested introducing an assumption defining 
β(x): 

 

0tan ( ) ( ),f x f xβ λ= +                                (23) 
 

where f(x) is a linear function that allows the value 
f0(a) and f0(b) to be equal to the values of tanβ at x=a 
and x=b respectively. f0(x) is another function that has 
zero values at x=a and x=b. Criteria of fixing the 
boundary values of tanβ at x=a and x=b have been 
given to ensure satisfaction of the principal of com-
plimentary shear stresses (Chen and Morgenstern, 
1983).   
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Fig.7  The optimization process for locating the critical
failure mode 
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In practical applications, the following two ap-
proaches are normally used. 
Assumption 1    Takes f0(x)=0 and f(x)=1 (Fig.3b). 
This means that tanβ is a constant λ. This method is 
normally referred to as Spencer (1966)’s method. 
Assumption 2    Takes f0(x) as a linear function and 
f(x) as a sine function (Fig.3c). This approach is par-
ticularly useful when active earth pressure P is de-
termined. 

It is possible to find F (or P) and λ from Eqs.(16) 
and (17) by iterations. For details refer to Chen and 
Morgenstern (1983) or Chen and Li (1998). 
 
Formulations for the upper-bound method 

1. Solutions to the velocity field  
For a pair of adjacent slices, the velocity of the 

left and right slices Vl, Vr and the relative velocity Vj 
form a closed triangle. Therefore we have (Fig.8) 

 
sin( ) / sin( ),r l l j r jV V θ θ θ θ= − −                (24) 

sin( ) / sin( ),j l r l r jV V θ θ θ θ= − −                   (25) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where θ is the angle of the velocity vector measured 
from the positive x axis. Donald and Chen (1997) 
argued that there are two possible directions of rela-
tive movement: the left slice moves upward relative to 
the right one as shown in Fig.8a or downward as 
shown in Fig.8b. 

For a slice numbered i, Vl, Vr and Vj can be ex-
pressed as a linear function of the velocity of the left 
first slice V1 (Fig.5): 
 

1,iV Vκ=                                                 (26) 
where  

1

[sin( ) / sin( )],
i

l l j r r j
i ei i i ei i

j

κ α φ θ α φ θ
=

= − − − −∏   (27) 

 
l and r refer to the left and right sides of the interfaces.  

Eq.(24) can be transformed to an integral if the 
width of the slice approaches to infinitesimally small 
(Fig.9),  

 

0
1

dexp cot( ) d ,
d

x

e jx
V Vακ α φ θ ζ

ζ
 

= − − − 
 
∫       (28) 

and Eq.(25) yields 

0csc( ) ( )d .j e jV V E xα φ θ α= − − −                 (29) 

 
2. Solving for F  
Substituting Eqs.(28) and (29), Eq.(15) becomes 

 

0

0

d( cos sin )sec sin( ) ( )d
d

d( cos sin ) csc( ) ( )d
d

    0,                                                              (30)

n

n

x

e e e ex

x j j j j
e e e e jx

i

Wc u E x x
x

c u L E x x
x

K

φ φ α α φ

αφ φ α φ θ

 − − −  

− − − −

+ =

∫

∫

 
where Ki is a coefficient accounting for possible dis-
continuities in α and φe: 
 
 
 
 
 
 
 
 
 
 

Slice 

Block 

x 

y

Fig.9  Determining Vr and Vj by integration 

Fig.8   Determining Vr and Vj based on Vl 
(a) The left slice moves upward relative to the right one;

(b) The left slice moves downward relative to the right one

(a)    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
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1
[( cos sin ) csc( )

          sin( ) ( )].                              (31)

n
j j j j r r

i e e e i i e j
i

l
e i i

K c u L

E x

φ φ α φ θ

α φ
=

= − − − −

⋅ ∆ − ∆

∑

 
The subscript ‘e’ involved in the variables implies an 
unknown value of factor of safety F by the definition 
of Eqs.(1) and (2). 
 
Validation and illustrative examples 

The two examples shown in this Section are 
mainly aimed at validating the upper-bound method, 
compared to the method of vertical slices, which is 
original in the discipline of Soil Mechanics.  
Example 1    Comparisons among various methods 

Figs.10 and 11 show a test example that is taken 
from (Donald and Giam, 1992). The geometric details 
and geotechnical property parameters can be found in 
Donald and Giam (1992).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The slip surface is defined by 4 nodal points 

designated as A, B, C, D connected by smooth curves 
as shown in Fig.11a. The slip surfaces 1 and 2 in 
Fig.10 are related to the methods of Spencer (F=1.366) 
and Bishop (F=1.378) respectively. Fig.11 shows the 
calculation details using the upper-bound method. 

The factor of safety for the initial failure mode using 
Eq.(30) was 1.630 as shown in Fig.11a. The minimum 
F for the critical failure mode shown in Fig.11b was 
1.401. The critical failure surface, designated 3 in 
Fig.10, can be compared with those given by the 
conventional methods designated 1 and 2.  
Example 2    An uniform slope subjected to a vertical 
surface load 

For a uniform slope subjected to a vertical sur-
face load, Sokolovski (1960) gave a closed-form 
solution with the assumption that the weight of the 
soil is neglected. The plastic zone is shown in Fig.12. 
The slip surface consists of two straight lines and a 
log-spiral. The ultimate load q is determined by  
 

1 sincot exp[( 2 ) tan ] 1 ,
1 sin

q c φφ γ φ
φ

 + ′= π − − − 
       (32) 

 
where γ′ is the sloping angle of the surface line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It has been demonstrated that with this particular 
slip surface, Eq.(30) is reducible to Eq.(32). Details 
are given by Chen et al.(2005). 

The numerical work adopts c=98 kPa, φ=30°, 
and the closed-form solution for the ultimate load q is 
111.44 kPa. Associated with this load, we started with 
a 4-block mechanism as shown in Fig.13a. Using the 
upper-bound method, it is easy to find that the value 
of factor of safety is F=1.047 by Eq.(30). The opti-
mization procedures described in Fig.7 gave a critical 
failure mode as shown in Fig.13b with a solution 
Fm=1.013. As the failure mass was divided into 16 
slices, we obtained a failure mode almost identical to 

Fig.12  A uniform slope subjected to a vertical surface 
load (Sokolovski, 1960) 

Fig.10  Comparisons of the critical slip surfaces obtained
from various methods. 1: Spencer, F=1.366; 2: Bishop,
F=1.378; 3: Upper-bound, F=1.401 
 

Fig.11  The upper-bound solutions for Example 1 
(a) The initial failure mode; (b) The critical one 

(a) 
 
 
 
 
(b) 
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the one suggested by the closed-form solution as 
shown in Fig.12c, associated with Fm=1.006. 

 
 
 
 
 
 
 
 
 
 
 
 

FROM SLOPE STABILITY TO EARTH PRES-
SURE ANALYSES 
 
General 

The active earth pressure is normally determined 
by Coulomb’s theory that considers a straight line slip 
surface and force equilibrium condition only. This 
approach also implies an assumption that the point of 
earth pressure application is located at the lower 
one-third of the wall. These assumptions limit the 
Coulomb’s theory to be used only in gravity types of 
walls. In other words, it is assumed that the earth 
pressure applied to the wall is distributed in a triangle 
shape. In the ASCE Conference in memory of 50 
years experience for earth pressure, Peck (1992) 
wrote that: 
 

Now we understand that the distribution of the 
pressure is related to the deformation conditions, and we 
appreciate that the significance of these conditions was 
indeed the outstanding contribution of Terzaghi in his 
cigar box tests at Robert College and his large scale 
tests at MIT, …, where he demonstrated that various 
deformation conditions could lead to a center of pres-
sure anywhere between lower and upper third points. 
 

The generalized method of slices presented in 
this paper considers moment equilibrium condition 
and covers the boundary condition of an external load 
P at the end x=b. This method thus permits the slope 
stability analysis method to be extended to earth 
pressure problems with varied location of point ap-
plication. On the other hand, this generalized method 
can be used to validate the empirical coefficients used 
 

for calculating the active earth pressure on a flexible 
wall where Coulomb’s theory is not applicable. An 
illustrative example is presented here. Further studies 
regarding comparisons between the results calculated 
by Terzaghi–Peck-Mesri empirical method and ana-
lytical approaches can be found in Chen and Li 
(1998). 

 
An illustrative example 
Example 3     Calculating the active earth pressures 
with different input of k 

Fig.14a shows a 12 m high retaining structure 
backfilled with a cohesionless soil with φ=36°. The 
unit weight of the material is γ=20.58 kN/m3. The 
classical active earth pressure per meter width can be 
calculated as 

 
 2 2tan (45 / 2) / 2 384.7 kN.aP Hφ γ= − =  
  
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14a shows the critical slip surfaces associ-
ated with different locations of points of application 
starting from the same initial slip surface numbered 0. 
Defining k=h/H, the calculated slip surfaces 1, 2, 3 
correspond to the cases k=1/3, 1/2, 2/3 associated with 
Pa=387.3, 599.1 and 462.8 kN respectively. The ac-
tive pressure obtained for the case k=1/3 was very 
close to the classical solution. The associated critical 
slip surface (curve 1) was almost a straight line, while 
those for case k=1/2 or k=2/3 (curves 2 and 3) exhib-
ited a rather curved shape. The results are in general 
agreement with the understanding that a supported 
wall, such as the braced, anchored or cantilever wall, 
which has a k value close to 1/2, usually presents a 
larger active earth pressure, compared with that of a 
gravity wall.  
 

Fig.13  Calculations by the upper-bound method for
Example 2 
(a) The initial failure mode with 4 blocks; (b) The critical
failure mode with 4 blocks; (c) The critical failure mode with
16 blocks 
 

(a)                              (b)                                (c)

(a)                                                (b) 

Fig.14  Calculating the active earth pressures with dif-
ferent input of k. (a) The initial critical slip surfaces; (b) 
The active earth pressures 
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FROM SLOPE STABILITY TO BEARING CA-
PACITY ANALYSES 
 
General 

The traditional bearing capacity analysis method 
adopts Prantdl solution that is based on the slip-line 
field method. Sokolovski (1960) provided a com-
prehensive review of this method and a number of 
solutions to bearing capacity problems. However, 
since this method employs purely analytical ap-
proaches, it is practically impossible to handle geo-
technical problems that normally have complicated 
geometry and material properties. The Prantdl solu-
tion is thus attached by a number of empirical coef-
ficients accounting for the influence of the weight of 
soils, embedment of footings, inclination of the sur-
face load, etc. These treatments are still insufficient if 
the foundation is layered, irregularly shaped, and 
partly submerged by ground water. 

The upper-bound method described in this paper 
has a sound theoretical background. Example 2 shows 
that this method is able to produce the results identical 
to those provided by slip-line field theory. Therefore, 
various empirical coefficients are no longer necessary.  

On the other hand, this method can also be used 
to evaluate the feasibility of various empirical coef-
ficients currently being used. Detailed discussions 
can be found in Wang et al.(2001). An illustrative 
example is presented here. 
 
An illustrative example 
Example 4    Calculating the bearing capacity for a 
uniform foundation 

To demonstrate the accuracy of the upper-bound 
method applied to bearing capacity analysis, let us 
review a simple problem that involves a uniform soil 
foundation under a vertical surface load. For a 
weightless and cohesionless soil foundation, as 
shown in Fig.15, with the parameters c=30 kN/m2 and 
B=17 m, the well-known Prandtl solution gives. The 
initial failure mode is randomly defined by 5 nodal 
points connected by a smooth curve and 4 inclined 
interfaces. The factor of safety calculated by Eq.(30) 
is 1.704. The optimization process gives a critical 
failure mode as show in Fig.15b associated with a 
minimum factor of safety F=1.004. It can be found 
that not only the value of F meets the theoretical 
answer but also the failure mode depicts a slip line 
field almost identical to the closed-form solution.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FROM 2D TO 3D ANALYSES 
 
General 

To-date, applications of the limit equilibrium 
method have been mainly limited to 2D area, al-
though its potential to 3D area is great (Seed et al., 
1990; Morgenstern, 1992). Duncan (1996) summa-
rized the main research outcomes of the development 
of 3D analysis methods during the past 25 years since 
1966.  

In the 3D area, the failure mass is divided into a 
series of columns (Fig.16), either with vertical in-
ter-column faces in the limit equilibrium approaches, 
or inclined faces in the upper-bound method.   
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Fig.16  3D slope stability analysis using the ‘method of 
columns’ 
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Fig.15  Calculating the bearing capacity for a uniform
foundation 

(a) The initial failure mode; (b) The critical failure mode
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It has been shown that in the 2D area any limit 
equilibrium (lower-bound) method involves some 
assumptions regarding the inter-slice forces in order to 
render the problem statically determinate. Extending 
the limit equilibrium method to 3D areas encounters 
even more serious challenges on all these limitations. 
One method differs from the others in terms of: (1) the 
assumptions made on the inter-column forces; (2) the 
equations that render mechanical equilibrium condi-
tions; and (3) simplifications regarding the shape of 
the slip surfaces.  

On the other hand, the upper-bound method de-
scribed has also been extended into 3D areas. While it 
enjoys more rigorous theoretical background, the 
optimization procedures in finding the critical failure 
mode can be challenging due to the increasing num-
ber of freedoms in the 3D areas.  

This Section briefly reviews the recent devel-
opments in this area by the author’s research group.  
 
The limit equilibrium approach—3D Spencer 
method 

Chen et al.(2003) made the following three as-
sumptions: 

(1) The horizontal shear forces on the 
row-interfaces (ABFE and DCGH in Fig.17) are ne-
glected, i.e., the inclination of inter-column force G to 
the x-axis, designated β, is assumed to be parallel to 
the xoy plane. It is further assumed that β is constant 
for all columns.  

(2) Shear forces applied to the column-interfaces 
(ADHE and BCGF in Fig.17) are neglected. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3) The shear force applied to any column base T, 
is assumed to be inclined at an angle of ρ measured 
from xoy plane to the positive z-axis. For prisms in 
any column direction (i.e., those with constant z val-
ues), ρ is taken to be constant. In the z-direction, ρ is 
defined as (Fig.18),  

 
,            0;

,        0.
R

L

z z
z z

ρ κ
ρ ηκ

= ⋅ <
= − ⋅ ≥

                             (33) 

 
This means that the basal shear forces on the left and 
right sides of the central xoy plane take opposite di-
rections and vary linearly with respect to the z-axis. 

 

 

 

 

 

By projecting all of the forces to a column in the 
direction S′ that is perpendicular to the inter-column 
forces G (Fig.19), a straight forward equation calcu-
lating the normal force Ni, applied on the column base 
can be obtained: 

 

cos ( tan )( sin cos )
 ,

sin cos tan ( sin cos )

i

i i e i x y

x y e x y

N
W uA c A m m

n n m m
β φ β β
β β φ β β

=
′ ′+ − − +

′− + + − +
 (34) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.17  Assumptions made for the internal forces (Chen et 

al., 2003) 

L zρ ηκ= − ⋅
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Fig.18  Assumptions made for the distribution of ρ 
 

Fig.19  Projecting all of the forces on a column in the
direction S′ 
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where u is the pore pressure at the column base (of 
area Ai). Wi is the weight of the column. mx, my, mz are 
direction cosines of the shear force T, and nx, ny, nz are 
direction cosines of the normal to the column base.  

Establishing the force equilibrium equations in y 
and z directions and the moment equilibrium equation 
around z-axis, the method obtained the following 
three controlling equations: 
 

[ ( cos sin )

         ( cos sin ) sin ] 0,
i x y i

i x y i i

S N n n

T m m W

β β

β β β

= +

+ + − =
∑    (35) 

( ) 0,i z i zZ N n T m= ⋅ + ⋅ =∑                   (36) 

= [ + + ]=0,i i x i y i x i yM W x N n y N n x T m y T m x− − −∑   (37) 

 
which involves three unknowns F, β and κ to be 
solved by the Newton-Raphson method. 

This method allows satisfaction of complete 
overall force equilibrium conditions and the moment 
equilibrium requirement about the main axis of rota-
tion. The computational procedure is simple because 
it involves only three unknowns. 
 
The 3D upper-bound analysis  

The 3D upper-bound method divides the failure 
mass into a series of columns with inclined interfaces. 
Using the symbol ↕ to represent the interfaces be-
tween two adjacent columns, and ↔, between two 
adjacent rows of prisms, the 3D work-energy balance 
equation, extended from Eq.(15) is 
 

, , ,, .i j e i j ei j eD D D∗ ∗ ∗ ∗
↔ + + =∑ ∑ ∑ WV              (38) 

 
The three terms in the left-hand side of Eq.(38) rep-
resent the energy dissipations developed on the 
row-to-row, column-to-column and the basal surfaces 
of a prism respectively. The postulated failure 
mechanism is represented by a superscript ‘*’. 

The right side of Eq.(38) sums up the work done 
by W, the weight of the prism. V is the velocity 
developed by a small increment of the external load. 

By employing the Mohr-Coulomb associated 
flow law and conditions for kinematical compatibility, 
we have the following relationships: 

(1) The plastic velocity is inclined at an angle of 
φe to the failure plane, i.e. 

 

( , ) cos( ) sin ,e eφ φΦ = π/2 − =V N                     (39) 
 

where the symbol Φ means a dot product of the two 
unit vectors involved in the parenthesis (here are V 
and N). N is normal of the slip surface on which V is 
developed. The energy dissipation developed on the 
slip surface can be determined by Eq.(14).  

(2) The requirement for kinematical compatibil-
ity as expressed by the following equations enables 
the calculation of the velocity field, 

 

, , 1,i j i j i j↔ −= −V V V                                  (40) 

, 1, .i j i ji j −= −V V V                                   (41) 

 
The calculations start from the ‘neutral plane’ 
(Fig.20), which represents the main direction of 
sliding movement and is assumed to move without 
lateral component. Eqs.(40) and (41) allow a succes-
sive determination of Vi,j. By substituting Vi,j and D 
into Eq.(38), the factor of safety is obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An illustrative examples 
Example 5     The testing problems presented by 
Zhang (1988) 

The two examples presented by Zhang (1988) 
are shown in Fig.21. These problems have been re-
evaluated by a number of authors as part of the vali-
dation process for their 3D analysis methods (Lam 
and Fredlund 1993; Huang and Tsai, 2000).  
Case 1    The ellipsoidal spherical slip surface 

The slip surface has a circular shape at the cen-
tral xoy plane and extends in the lateral z direction by 
elliptic lines. Chen et al.(2001a) reported the up-
per-bound solutions using the method described in 
 

Fig.20  A plan view of the discretization pattern of the 
failure mass 
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Section “The 3D upper-bound analysis”. 
They obtained a factor of safety of F=2.262.  

This can be compared with Zhang (1988)’s solution of 
F=2.122. Reanalysis using the limit equilibrium 3D 
Spencer method results in F=2.187. Fig.22 shows the 
isometric view of the failure mass. 
Case 2    The ellipsoidal spherical slip surface with a 
weak seam 

This case concerns the ellipsoidal spherical slip 
surface that is partly replaced with a plane repre-
senting a weak seam, shown as Case 2 in Fig.23. This 
example, from (Zhang, 1988), has also been reevalu-
ated by a number of authors, whose solutions are 
summarized in Table 1. The upper-bound and 3D 
Spencer solutions are 1.717 and 1.640 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

CONCLUSION 
 

This paper provides the traditional soil mass 
stability analysis methods with a sound theoretical 
background based on Plasticity and endorses them a 
system of well organized mathematical formulations, 
in which a mature discipline of mechanics should 
have possessed. Main findings are summarized as 
follows: 

(1) The solution of a slope stability analysis can 
be bracketed by its upper- and lower-bounds, pro-
vided by the limit analysis of Plasticity, i.e. 
Flower<Freal<Fupper. 

(2) The methods of vertical slices, referred to as 
generalized methods of slices, imply lower-bound 
solutions. It has been successfully extended to the 
area of active earth pressure analysis that accounts for 
different input of locations of earth pressure applica-
tions.  

(3) The method of inclined interfaces gives an 
upper-bound approach to the stability analysis. It 
enjoys a sound mechanical background and is able to 
provide accurate solutions of soil plasticity. It has 
been successfully extended to the area of bearing 
capacity analysis in which various empirical coeffi-
cients are no longer necessary.  

(4) The 3D upper- and lower-bound methods 
have been made possible and shown great potential 
for solving various engineering problems. 
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